Research Groups > Genes and Metabolism Integrative Genomics and Medicine

“We use systems-genetics approaches to identify functional networks and elucidate the regulation of complex traits and disease”

To advance our understanding of the genetic regulation of complex traits and disease we can now generate multiple genome-scale data modalities in a single experiment, allowing unprecedented insights into the molecular mechanisms underlying disease. Moving toward a systems-genetics approach to disease, we combine genomics and network- based analyses for the study of complex traits, including metabolic, cardiovascular, inflammatory and neurological disease. Rather than identifying single susceptibility genes, we use systems-genetics approaches to identify key (epi)genetic regulators of networks, predict their functional consequences in multiple tissues and organs, and facilitate network-based drug discovery in human disease.

We combine reverse-engineering strategies for regulatory gene networks with Bayesian modelling approaches in multiple tissues for deeper analyses of the genetics of common diseases. This strategy is used to identify key genes and regulatory networks that modulate disease or physiological traits at the organism level.



Figure 1 - System-genetics to dissect disease mechanisms. Complex gene network driven by the Irf7 transcription factor, which was identified in multiple rat tissues. Nodes represent individual genes: the node representing Irf7 is coloured red and its predicted targets are coloured blue. Edges connect genes that are either predicted Irf7-targets (black) or show significant correlation of expression levels to one of the predicted targets (grey). The network is highly enriched for immune response genes and has been named “Irf7-driven inflammatory gene network” or iDIN. iDIN genes contribute to Type 1 Diabetes (T1D) risk in humans and Ebi2 (or Gpr183), which controls Irf7 in macrophages, represents a candidate for trans-regulation of the human iDIN and for T1D risk (Heinig*, Petretto* et al. Nature 2010).


We have developed a new algorithm to identify common and differential cluster structures simultaneously across multiple conditions. The Cross-Condition-Cluster-Detection or C3D algorithm (Matlab), documentation and example data files are available at C3D.





Figure 2 - Multi-tissue networks analysis in the rat using the C3D method identified heat shock protein (Hsp) genes (Hsp90b1, DnaJ (Hsp40) homologs, Hspa5, Hspb8, Hsph1) and the Hsf1 (heat shock transcription factor 1), which were co-expressed with genes known to have disease mutations in hereditary cardiomyopathy in humans (Bag3, Cryab, Kras, Emd, Plec). Conserved co-expression between Hsp and cardiomyopathy genes in rats and humans suggest a potential role for heat shock proteins in cardiovascular disease (Xiao et al PLoS Genetics 2013).

 Integrative Genomics and Medicine
Group head

Enrico Petretto (Dr)

Telephone 31468
Email
Group members

Michelle Krishnan

Aida Moreno Moral (Miss)

Ryan Pedrigi

Owen Rackham (Dr)

Tiziana Rossetti (Dr)

Maxime Rotival (Dr)

Kirill Shkura (Mr)

PhD Student
Email

Antonio Simoes de Marvao (Dr)

Prashant Srivastava (Dr)

Xiaolin Xiao (Dr)

Admin contact

Christine Greig (Ms)

Telephone 34318
Email
Contact details
+44 (0) 20 838 31468
Selected publications
Xiao, X., Moreno-Moral, A., Rotival, M., Bottolo, L., Petretto, E., 2014. Multi-tissue analysis of co-expression networks by Higher-Order generalized singular value decomposition identifies functionally coherent transcriptional modules. PLoS Genetics 10 (1), e1004006+. | Full text

Heinig, M.*, Petretto, E.*, Wallace, C., Bottolo, L., Rotival, M., Lu, H., Li, Y., Sarwar, R., Langley, S. R., Bauerfeind, A., Hummel, O., Lee, Y.-A. A., Paskas, S., Rintisch, C., Saar, K., Cooper, J., Buchan, R., Gray, E. E., Cyster, J. G., Cardiogenics Consortium, Erdmann, J., Hengstenberg, C., Maouche, S., Ouwehand, W. H., Rice, C. M., Samani, N. J., Schunkert, H., Goodall, A. H., Schulz, H., Roider, H. G., Vingron, M., Blankenberg, S., Münzel, T., Zeller, T., Szymczak, S., Ziegler, A., Tiret, L., Smyth, D. J., Pravenec, M., Aitman, T. J., Cambien, F., Clayton, D., Todd, J. A., Hubner, N., Cook, S. A. (2010). A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature 467, 460–464. Abstract

Petretto, E.*, Bottolo, L.*, Langley, S. R., Heinig, M., McDermott-Roe, C., Sarwar, R., Pravenec, M., Hübner, N., Aitman, T. J., Cook, S. A., Richardson, S. (2010). New insights into the genetic control of gene expression using a Bayesian multi-tissue approach. PLoS Computational Biology 6 (4), e1000737. (*joint first authors) Abstract

Ioannidis, J. P. A., Allison, D. B., Ball, C. A., Coulibaly, I., Cu, X., Culhane, A. C., Falchi, M., Furlanello, C., Game, L., Jurman, G., Mehta, T., Mangion, J., Nitzberg, M., Page, G. P., Petretto, E., van Noort, V. (2009). Replication of analysis of published microarray gene expression analyses. Nature Genetics 41, 149–155. Abstract

Petretto, E.*, Sarwar, R.*, Grieve, I., Lu, H., Kumaran, M. K., Muckett, P. J., Mangion, J., Schroen, B., Benson, M., Punjabi, P. P., Prasad, S. K., Pennell, D. J., Kiesewetter, C., Tasheva, E. S., Corpuz, L. M., Webb, M. D., Conrad, G. W., Kurtz, T. W., Kren, V., Fischer, J., Hubner, N., Pinto, Y. M., Pravenec, M., Aitman, T. J., Cook, S. A. (2008). Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nature Genetics 40, 546–552. Abstract

Petretto, E., Mangion, J., Dickens, N. J., Cook, S. A., Kumaran, M. K., Lu, H., Fischer, J., Maatz, H., Kren, V., Pravenec, M., Hubner, N., Aitman, T. J. (2006). Heritability and Tissue Specificity of Expression Quantitative Trait Loci. PLoS Genetics 2, e172. Abstract

Hubner, N., Wallace, C. A., Zimdahl, H., Petretto, E., Schulz, H., Maciver, F., Mueller, M., Hummel, O., Monti, J., Zidek, V., Musilova, A., Kren, V., Causton, H., Game, L., Born, G., Schmidt, S., Müller, A., Cook, S. A., Kurtz, T. W., Whittaker, J., Pravenec, M., Aitman, T. J., (2005). Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nature Genetics 37, 243–253. Abstract

Imperial College, London
MRC Clinical Sciences Centre | Faculty of Medicine | Imperial College London | Hammersmith Hospital Campus
Du Cane Road | London | W12 0NN | United Kingdom | Contact us | Website help © 2012 MRC Clinical Sciences Centre | Website by Revolving